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Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods
interact with each other ?



Introduction

Two competing methods in machine learning: Neural Networks and Kernel Methods.

Question: Did N.N. end the game ? Or is it a never-ending war ? Can these methods
interact with each other ?

Outline of the talk:
> Introduction to Supervised Learning.
> Neural Networks and Neural Tangent Kernel.
> Theoretical and Practical Consequences.
> Extreme Learning and Regularized Kernel Methods.
> Kernel Method Generalization from the training set.

Answer: Deep connections and interplay between Neural Networks and Kernel Methods.



Introduction to Supervised Learning



Abstraction and the Four Main Questions

Ideal Goal: to predict
e.g. : age of a person in a picture

1

Parameterized family training part Realistic Goal : train data
—

of functions : (fy)ycpe — e e.g. : "few" labelled pictures

optimization : 6*
| N\
| Existence is not enough,
N we want to find it.
Generalization
You hope that the ideal goal is achieved



Abstraction and the Four Main Questions

Ideal Goal: to predict
e.g. : age of a person in a picture

1
Realistic Goal : train data

Parameterized family training part
—
of functions : (fy)ycpe — e e.g. : "few" labelled pictures

optimization : 6*
N\

| Existence is not enough,
N we want to find it.

Generalization
You hope that the ideal goal is achieved

What does it learn ? Is it useful ?

Does it learn ? How does it learn ?
Generalization error

Training error (fo)r>0 fo~




General Setup: Regression, Predict /* : R™ — R«
Always assume ny,; = 1, generalizable to ny,; > 1.

Goal:
>ldeal: Vx, fo(x) ~ f*(x),
>Proxy: Functional Cost, e.g. M.S.E
1 *
e(f) = 5 [ (F6) = F(x))? du(),
>Dataset: (X;,yi == *(Xi));—y__

>Cost function : Cost ~ 0 <=Goal

achieved, e.g.
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Goal:
>ldeal: Vx, fo(x) ~ f*(x),
>Proxy: Functional Cost, e.g. M.S.E

() = 5 [ (760~ 1) dutx).

>Dataset: (x;, yi := (X)),

.....

>Cost function : Cost ~ 0 <=Goal
achieved, e.g.

Model:

>Parameterization:

F:0ecR” - F,

>Parameters Cost Function:
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Cy is often convex, F can be not linear
= the cost C might be non convex.



General Setup: Regression, Predict /* : R™ — R«
Always assume ny,; = 1, generalizable to ny,; > 1.

Goal: Model:
>ldeal: Vx, fo(x) ~ f*(x), >Parameterization:
>Proxy: Fu?ctional Cost, e.g. M.S.E F.0cRP 5 F,
* 2

e(f) = 5 [ (F6) = F(x))? du(), - Parameters Cost Function:
>Dataset: (xi, ¥i := F(x))i_y_n- C=CuoF,
>Cost function : Cost ~ 0 <=-Goal
achieved, e.g. . )

;N Cy is often convex, F can be not linear
Cn(f) = N Z (f (x)) — yi)?, = the cost C might be non convex.

i=1

Problem : Minimize C with an explicit algorithm: arg min C(6).
0




Motivation: Two competing spaces of functions

Kernel methods
> (M, (),) Hilbert space of real valued
functions, evaluation on x continuous:
f(x) = (f, Kx)y -
The kernel K(x,y) = K«(y) satisfies:
1. Symmetric K(x,y) = K(y, x),
2. Matrices (K(x;, X;))i; are positive
semidefinite.

> Find f* minimal norm in 4 such that
f(x;) = yi (or MSE+A||f]5,, A\, 0).
> Representer theorem: f* of the form

N
fo() =D 0iK(x,").
i=1

> Solution: 0* = K(X, X)~'Y.
> Ridgeless Kernel Regression:
fo- () = 2004 07 K (i )-
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Kernel methods
> (M, (),) Hilbert space of real valued
functions, evaluation on x continuous:
f(x) = (f, Kx)y -
The kernel K(x,y) = K«(y) satisfies:
1. Symmetric K(x,y) = K(y, x),
2. Matrices (K(x;, X;))i; are positive
semidefinite.

> Find f* minimal norm in 4 such that
f(x;) = yi (or MSE+A||f]5,, A\, 0).
> Representer theorem: f* of the form

N
fo() =D 0iK(x,").
i=1

> Solution: 0* = K(X, X)~'Y.
> Ridgeless Kernel Regression:
fo- () = 2004 07 K (i )-

Fully connected Artificial Neural
Networks

> A parameterization of a dense space of
functions:

fy : RM ? RM" - RM" - R™ — R™ —

1 o As o
R ROt Rou
o

AL
with:
1. A : R — R an affine function
(the parameters),
2. o the pointwise application of a
non-linearity o : R — R.

> Find 8* which minimizes the cost C.

> Gradient descent.

> Beliefs : Gradient descent will be stuck
in good minimum.



Questions and answers

Are they so different?

1. Infinite Width Neural Network = Kernel Method

2. Infinite Width Neural Network with finite last hidden layer ~ Kernel Method with
Regularization

Can Kernel Method Theory give us a better insight on A.N.N.?

1. It allows us to answer the Four Main Questions for Infinite Width Neural Network:
does it learn ? How does it learn ? What does it learn ? Does it generalize ?

2. Better insight into the architectural design of A.N.Ns.



Neural Networks and Neural Tangent Kernel



Main result: take away

Theorem (Jacot, Gabriel, Hongler, NeuRIPS 2018)

Gradient Descent Learning for Infinite Width Limit Neural Networks

|
Kernel Method for the Neural Tangent Kernel (N.T.K.)



lllustration
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Setup: Fully Connected Neural Networks

A Fully Connected Neural Network:

» Non linearity: 0 : R — R, e.g.
RelLU(x) = max(0, x). (Lipschitz,
twice differentiable nonlinearity
function for our theorem),

» Number of hidden layers: L — 1,

» Sizes of the layers:

Nin = No, M., NL—1, N = Noyt = 1.
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twice differentiable nonlinearity
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Setup: Fully Connected Neural Networks

A Fully Connected Neural Network:

» Non linearity: 0 : R — R, e.g.
ReLu(x) = x Vv 0. (Lipschitz, twice
differentiable nonlinearity function
for our theorem),

» Number of hidden layers: L — 1,

» Size of the layers:
n/’n = nOan17"'7nL717nL = nOUT = 1

Activations a(*). Preactivations a(*). Output function f;(x) = a(b)(x)
1
5(6+1) — () 5,(0) ()
& X) = W a9 (x) 4+ b\,
(x) N (x)+8

aN(x) = g(&(zw)(x))’

with pointwise application of o.



Setup: Algorithm, the gradient descent

We implement a first-order algorithm and we want the cost to decrease:
0 —-0+dd = C(9) - C(O)+(VC(H),do)

< do o« —VC(0)



Setup: Algorithm, the gradient descent

We implement a first-order algorithm and we want the cost to decrease:

0—0+d0 = C(0)— C0)+ (VC(0),do)

— df o« =V C(0)
Cost Algorithm Initialization
C=CnoF,ie. Gradient Descent: If (6p) =1 _p = 0, the gradient
N descent gets stuck.
c(6) = 21W S () — )P df = —VC(0)dt, Idea [LeCun/He init.]
=1 Gradient Flow: (Op)pey.p ~ N(0, 1) 1.

00 = —V C(0y)




New Object: The N.T.K.

How can we describe the training of N.N? Study the dynamics of f», and not of 6;.

How? Using a new kernel
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New Object: The N.T.K.

How can we describe the training of N.N? Study the dynamics of f», and not of 6;.

How? Using a new kernel

The Neural Tangent Kernel

£ of, af
@(L) X1 s X2 Z 0 0 (X2) <V9 fg(X1 ), Vo fg(X2)> .

It is random at initialization and evolves with time.



NTK and the learning dynamics.

The Neural Tangent Kernel

. P oofy | of
o) (x, %) = Z%(X 1) 55 (%) = (Volo(x1), Vol (x2))
b P

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L—1 hidden layers of width ny,...n._q:
fo : R" — R. During Gradient Descent:

Oy, = =V guCn;

where

N

_ Wy vy 9N
_I;:@, (X’X')é)fg,(x,-)'
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Proof: Dynamics
Recall that C = Cy o F, with Cy () = ¢ (f(x1), ..., f(Xn))-

> Parameter Space: df, = — 7 dt = — SV, o () Goeat.



Proof: Dynamics
Recall that C = Cy o F, with Cy () = ¢ (f(x1), ..., f(Xn))-

> Parameter Space: df, = — 7 dt = — SV, o () Goeat.

» Function Space:
2o
(%) = foran (%) ~ fo(X) + D dbpo ()
o1 P

Mz

afg iy
aep aop

i=1

d

aCn
af (x;)

dt.



Proof: Dynamics
Recall that C = Cy o F, with Cy (f) = ¢ (f(x1), ..

- F(Xn))-
> Parameter Space: d6, = — 57 dt = . o () Goeat.
» Function Space:
T
(%) = foran (%) ~ fo(X) + D dbpo ()
o p
ZN: z”:afg Ofy
2 ae,, )20,

» Neural Tangent Kernel: Y (x, x;) =

Zp1

Of; Of,
aei (%) ,99(2 (i)

d

aCn
af (x;)

dt.



Proof: Dynamics
Recall that C = Cy o F, with Cy (f) = ¢ (f(x1), ..

- F(Xn))-
> Parameter Space: d6, = — 57 dt = . o () Goeat.
» Function Space:
T
(%) = foran (%) ~ fo(X) + D dbpo ()
o p
ZN: z”:afg oh
— ae,, )99, X
> Neural Tangent Kernel: @D (x, x;) = 37 13&( )gg‘;(x,-).
» Dynamics:
N aCn
Oify (x) = = > _ 0B (x, X)) 5~ dt = ~VuCn.

pa i

aCn
af (x;)

dt.



Main Theorem

Theorem (Jacot, Gabriel, Hongler 18)

Consider a Fully Connected Neural Network with L—1 hidden layers of width ny,...n._4:
fy : RMn — R,
1. During Gradient Descent:

Oify, = =V wCh.

oY
2. Whenny,... ,n._y — oo sequentially:

> Atinitialization, fy, ~ N'(0,£") [Neal 96, de G. Matthews and al 17,18].
» The NTK:

» At initialization, becomes deterministic:

(L)
=0 — ©120 00"

> Becomes fixed during training: uniformlyont < T

o (x1, %) — 0 _ (xi,x)| — 0.

t=0,00




Limiting dynamics

The limiting trajectory is

Otfy, = C,

,ve(og
which converges to a global minimum if the cost functional C is convex and lower
bounded and O is positive definite.



Limiting dynamics

The limiting trajectory is

iy, = —V g C.

which converges to a global minimum if the cost functional C is convex and lower
bounded and O is positive definite.

Theorem (Jacot, Gabriel, Hongler 18)

Assume that the data xy, . .., xy lie on a sphere:
@&) is definite positive for any input dimension ny, i.i.f. o is a non polynomial function.




General Idea

Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the
pointwize application of o and an affine map.

A0 A
fa(L+1):Rno 0 RnLanL L, R

And use the chain rule.
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General Idea
Main Idea: break down an FCNN of size L + 1 as a FCNN of size L followed by the
pointwize application of o and an affine map.

A0 A
fa(L+1):Rno 0 RnLanL L, R

And use the chain rule.

This intuition holds during:
> inference: i.e. when you evaluate f{"""),
» training: training fe(“”) means training A; and training fg(L) with a time dependent cost
C(ALo(.)).
Main Tools:
» Induction on the number of layers L,
» Law of large number,
» CLT,
» Generalized Grénwall’s inequalities.
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Generalization: multiple output

Generalize to multi-dimensional output:
(L) n o_ Ofg k Ofg k11
> Ok (X X)) =2 ps P a6, (X) 5, (X')-

,,,,

. N ou L ac
> 8tf9, = —VOEL)CN with (Veﬁ”c"’)k = Z,-:1 2212[1 957;()7;(/('7)(/)W,N(Xi)~




Generalization: multiple output

Generalize to multi-dimensional output:
(L) n o_ Ofg k Ofg k11
> Ok (X X)) =2 ps P a6, (X) 5, (X')-

,,,,

. N ou L ac
> 8tf9[ = —VGEL)CN with (VegL)CN)k = Z,-:1 2212[1 957;()7;(/('7)(/)W-

Main Features of the Multiple Output Setting:

» Atinitialization, (fy, x);* are i.i.d.
» The limiting NTK is diagonal:

(ef;))k LX) = (egg) (x, x')) Sk

» The functions (f97k)2":“’1 evolve independently.



Other Generalizations

Since then (May 2018), many generalizations:

» Finite time step, large but finite width, infinite time horizon for M.S.E [Du S. for 2
layers ReLU ~ NTK (2018)], [Allen-Zhu et al. (2018)], [many papers of Arora S.,
Du S. and al (2019)]

» Lazy training: [Chizat-Bach (2018)], [Lee, Xiao and al. (2019)]

» Taylorised learning [Huang, Yau (2019)] : Neural Tangent Hierarchy, N® width
enough. Fluctuations(@t)o)N P-3, Fluctuations(egL) — eﬁi)o)N P-z. [Bai and al.
(2020)]

» Other architectures at initialization: Tensor Programs of Greg Yang (2019)

» Other optimization algorithm:

» Momentum [Lee, Xiao and al. (2019)]
» Natural gradient [Rudner, Teh, Wenzel, Gal (2019)]



Theoretical and Practical Consequence on ANN Learning



Reminder

The dynamics of fy, during training is given by:

Finite size Randomness Large limit
/" Random initial kernel eﬁQo Deterministic
Otfy, = =V gwCn, — Random evolution of @§L) Constant in time
t

oy \. Random initial function fy, fao ~ N (0, (D)



Answer to the Four Questions:

General setting

» Dynamics:

OCn
Oy, (X ol (%, xi)
t@y ) Z I afgt(xl)
Hence: fgt =M+ Z’l?,"t@(L)(X, X,').
» Final function:
fo + Kernel method for Cn(- + )

how and what?



Answer to the Four Questions: how and what?

General setting

» Dynamics:

OCN
Oy, (X ot (%, xi)
t0, ) Z I afgt(xl)
Hence: fgt =M+ Z’ﬁ,’yt@(L)(X, X,').

» Final function:
fo + Kernel method for Cn(- + )

MSE

For MSE, ach = fo, (X)) — yi: linear
differential equation.

On training points, the Gram matrix
yields the speed of convergence.

The function is Gaussian during training.
Final function:

Jooo = fo +KRx—o0,x,v)(f* — fo) or
fo.o = KRa=o,(x,v) (f) + ¢,

with noise error term
e = fo — KRx—o,(x,v)(fo). [Zhang, Xu
and al (2019)]



Answer to the Four Questions: train error and generalization?

» Training:
For MSE loss: training loss = 0. In general minimun error loss attained.

» Generalization:
Very large FCNN should generalize as RKHS methods: Rademacher bound should yield
bounds of the form %’W for bounded Lip. cost. [Arora, Du and al 2019 - 2 Layer
ReLu and bounded Lip. cost function]



Consequences: Training of large depth networks

Order-Chaos during inference [Daniely and al. 2016] [S.S. Schoenholz and al. 2017]
[Hayou, Doucet, Rousseau 2019]

Depending on the variance of the initialisation as L — oco: £(!) — C (order) or

¥ — Cy + Cadx—y (chaos)

Figure: From “On the Impact of the Activation Function on Deep Neural Networks Training” [Hayou
and al]



Consequences: Training of large depth networks

Freeze-Chaos during training [Jacot, Gabriel, Hongler 2019] [Agarwal, Awasthi, Kale 2020]
Depending on the variance of the initialisation:

» ©() 5 C (order), the bias are two important, difficult to train.
» 00 ~ Ciéx—y (chaos), easier to train, but generalization not good.

Figure: From “Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary
Artifacts” [A. Jacot, F. Gabriel, F. Ged, C. Hongler]



Consequences:Generalization
Function loss is convex : noise in the predictor is bad.

B | [ (000~ (0 du)| = [ (= (0 (0) - () dut) + [ ar [ (1ot

Bias Variance

» The noise due to fp, can be suppressed: train fy — f, instead of
» same dynamics + initialization = 0 — Kernel method
» [“Scaling description of generalization with number of parameters in deep learning”,
Geiger, Jacot, Spigler, Gabriel, Sagun, d’Ascoli, Biroli, Hongler, Wyart]
Still noise due to fluctuations(©{”,)~ P~# and fluctuations(8{" — &)~ P2

» Fluctuations of f5__ (x) ~ P—%, and Variance ~ P‘%,
» If bias is constant in overparameterized regime:

. . _1
Generalization error ~ Errorp—o, + P~ 2.

‘ Double curve descent phenomenon




Extreme Learning and Regularized Kernel Method



Extreme Learning

Extreme Learning = Learning the last layer’s parameters.



Extreme Learning

Extreme Learning = Learning the last layer’s parameters.

\ no paw. apphcation > To simplify, we consider no bias (i.e. no
f og o additive parameter) for the last layer, and we
assume that there is no pointwise application
of the non-linearity at the last hidden layer.
> We assume that all hidden layers, except
\ the last one, are infinite —- f,.(L_” are i.i.d.
: N (0, (1)

: ~ D > We train only the last hidden layer, with a
/(09; ﬁ%’eﬂ &'u £>-norm penalization on 6.

e R | |— | [ —

Result : This is close to a Kernel Method with kernel X(:=") but with a larger regularisa-
tion.

Implicit Regularization of Finite Sampling of Features




Rahimi & Recht’s Random Features

. f
fp: R s RP — R
x—>ﬁex

v

f is an infinite neural network at initialization (recall: no pointwise application of ¢ for
the output layer) in particular, f = (f, )] ; Li.d. G.P. N (0, K).

The parameters are 8 € R , and we consider N data points (x;, y,-),.’\i1
Optimization with % >0 penallzanon on the ¢>-norm of 6.

mln—z (fo (x) y, —||0H2

v

v

Closed Formulae: With Fj = ﬁf,-(x,-), optimal parameter: 6= (FTF+ AI,:)_1 FTy
leads to prediction: y = F (FTF + AI,:)_1 FT y and optimal predictor:

Ax

P
N i N
K00 = —= 3" 0%
VP 5

v




Large number of features

J=F(FTF+p)  FTy

Ax
But:
F(FTF+Mp) " FT = FFT (FFT + Alp) ™
with
(FFT ka(x, ) (X)) e K(xi, ;)
Thus:

7= KX X) KX X)+ M)y

and the predictor converge to the K Kernel predictor with ridge \:

A

H) () = B9 () = Ko, X) [K(X, X) + A"y



R.F. Predictor

P=100,A=10"%




Finite number of features

J=F(FTF+ ) FTy,  E[K™P00] = O 0)TOX X) E[A]y

Ax

> The matrix A, can be studied using the Stieljes transform: %Tr [(FTF + )\Ip)71:|
> The matrix F as a special structure: its columns are i.i.d. and Gaussian with cov lPK:

L
F~ —K72WT
VP

where W is a P x N random matrices with entries i.i.d. standard Gaussian.
> For the matrix FTF: 1

FTF ~ -WKWT
P )

whose Stieljes transform can be studied like K (W7 W): product of a Wishart Matrix
and a deterministic matrix, well studied in free probability.



Main result

Theorem (A. Jacot, B. Simsek, F. Spadaro, C. Hongler, F. Gabriel, ICML 2020)
Even for P < o, E [?iRF )(x)] is close to the Kernel predictor 1) with a larger “effective

ridge” \(y, \) > \ which is the unique solution of
. A1 N
R=a+ Sy (K(X, X) (K(X.x) + %) > :

where K(X, X) is the Gram matrix of K.

It is the implicit regularization effect of finite random features sampling.




Effective Ridge and Test Error
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Kernel Method Generalization from the training set



Experiments on Structured Data and Finite N.N.

Recent pre-print of J. Paccolata, L. Petrinia, M. Geigera, K. Tylooa, and M. Wyart:
Setting: Classification with hinge Loss c(y, y*) = (1 — yy*)*, shallow network, labels only
depends on the first coordinate (stripe model), parameters initialized very small (feature
learning regime).
Three phases during learning:

1. Compressing Regime: Parameters evolve independently and tend to align with the
0 BE || el Ba | s B

VAR SRR E

informative subspace. ¢ AT AT

2. Fitting regime: when a fraction of constraints are satified, the N.N. tries to fit the
labels but the parameters still evolve within the informative subspace.

3. Overfitting regime.
Question: Is the N.T.K. theory no more interesting ?



Final NTK v.s. Neural Network

Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !
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— Feature network
—— Lazy: ©g —— full kernel
10°34{ ---- Lazy: 96\ = last layer kernel
Lazy: O, -_— aftf-:r-tArainin.g
=== at initialization
2 13 4 T T
10 10 10 e -



Final NTK v.s. Neural Network

Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !
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Question (Open): How does the N.T.K. improves ? How does the Neural Network "knows
that the kernel needs to evolve, based only on the training points ?



Final NTK v.s. Neural Network

Answer: No, the kernel dynamics is still true but with an evolving kernel and in their
experiment the NTK at the end of training is as good as the Neural Network !
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Question: Can we estimate the generalization error of a kernel method, based only on the
training points ?



K.A.R.E. : the Kernel Alignement Risk Estimator

Consider a Kernel Method for

 Random i.i.d. training points x; ~ D in a compact domain Q
o Training labels y;* = f*(x;) + ee; with e; ~ N(0, 1)

& Minimizing 4 SN, (F() — yi)? + A |3, ie.

A (x) = K(x, X) [K(X, X) + My Ye

Fact (A. Jacot, B. Simsek, F. Spadaro, C. Hongler, F. Gabriel, 2020)

We propose the following estimator of the Risk of the Kernel predictor f\ with ridge \ :

Ly [LK(X, X) + Aly] 2 Y

s g 2 2 _
Ey,....00 0D {(f,\(x) f(x)) } TN - = KARE.

(%n {(%K(X, X) + A/N)*‘D

A theorem if only the second moments of the observations matters.



Experiments on Real Data

MSE
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Hyperparameter selection with K.A.R.E.
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Conclusion



To Wrap Up the Presentation

Recursive structure of A.N.N. = attractive properties. The training of A.N.N. using
Gradient Descent with Random Initialization explained using the Neural Tangent Kernel.
In the infinite width limit,

» the N.T.K. is deterministic and constant during training,
» the function follows a Kernel Gradient Descent with fixed kernel,
» the N.T.K. is > 0 and the limiting dynamics converges to a global minimum,

» the final function is of the form Noise + Kernel Method, and by a slight change on the
definition of ANN, it becomes a deterministic Kernel Method.

In the finit width case:

» Fuctuations of the N.T.K. at initialization are the most important and decrease with
P: generalization error decreases as P~z — double curve descent is expected.

» Last hidden layer finite followed by linear map, last parameters learned with /2 penalty
with ridge \: again close to a Kernel Method with an other so-called “effective”
ridge A > \.

Kernel Method:
» Propose a new estimator for the risk for Kernel Methods: the KARE.



Thank you !
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